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SUMMARY

Most predictions of exascale machines picture billion ways parallelism, encompassing not only millions
of cores but also tens of thousands of nodes. Even considering extremely optimistic advances in hardware
reliability, probabilistic amplification entails that failures will be unavoidable. Consequently, software fault
tolerance is paramount to maintain future scientific productivity. Two major problems hinder ubiquitous
adoption of fault tolerance techniques: (i) traditional checkpoint-based approaches incur a steep overhead
on failure free operations and (ii) the dominant programming paradigm for parallel applications (the mes-
sage passing interface (MPI) Standard) offers extremely limited support of software-level fault tolerance
approaches. In this paper, we present an approach that relies exclusively on the features of a high quality
implementation, as defined by the current MPI Standard, to enable advanced forward recovery techniques,
without incurring the overhead of customary periodic checkpointing. With our approach, when failure
strikes, applications regain control to make a checkpoint before quitting execution. This checkpoint is in
reaction to the failure occurrence rather than periodic. This checkpoint is reloaded in a new MPI applica-
tion, which restores a sane environment for the forward, application-based recovery technique to repair the
failure-damaged dataset. The validity and performance of this approach are evaluated on large-scale systems,
using the QR factorization as an example. Published 2013. This article is a US Government work and is in
the public domain in the USA.
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1. INTRODUCTION

The insatiable processing power needs of domain science has pushed high-performance computing
(HPC) systems to feature a significant performance increase over the years, even outpacing ‘Moore’s
law’ expectations. Leading HPC systems, whose architectural history is listed in the Top500‡ rank-
ing, illustrate the massive parallelism that has been embraced in the recent years; current number
one—Titan—has over half a million cores (including accelerators) and number two—Sequoia—has
over 1.5 million cores, and even with the advent of accelerators, it requires no less than 98,000
cores for the DiRAC system (#23) to breach the Petaflop barrier. Indeed, the International Exas-
cale Software Project, a group created to evaluate the challenges on the path toward Exascale, has
published a report outlining that a massive increase in scale will be necessary when considering
probable advances in chip technology, memory, and interconnect speeds, as well as limitations in
power consumption and thermal envelope [1]. According to these projections, as early as 2014, bil-
lion way parallel machines, encompassing millions of cores and tens of thousands of nodes, will
be necessary to achieve the desired level of performance. Even considering extremely optimistic
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advances in hardware reliability, probabilistic amplification entails that failures will be unavoidable,
becoming common events. Hence, fault tolerance is paramount to maintain scientific productivity.

Already, for Petaflop scale systems, the issue has become pivotal. On one hand, the capacity type
workload, composed of a large amount of medium to small scale jobs, which often represent the
bulk of the activity on many HPC systems, is traditionally left unprotected from failures, resulting
in diminished throughput when failures occur. On the other hand, selected capability applications,
whose significance is motivating the construction of supercomputing systems, are protected against
failures by ad hoc, application-specific approaches, at the cost of straining engineering efforts,
translating into high software development expenditures. Traditional approaches based on periodic
checkpointing and rollback recovery incurs a steep overhead as much as 25% [2] on failure-free
operations. Forward recovery techniques, most notably Algorithm-Based Fault Tolerant techniques
(ABFT), use mathematical properties to reconstruct failure-damaged data and to exhibit signifi-
cantly lower overheads [3]. However, this is a major issue preventing their wide adoption; the
resiliency support ABFT demands from the MPI library largely exceeds the specifications of the
MPI Standard [4] and has proven to be an unrealistic requirement, considering that only a hand-
ful of MPI implementations provide it. Several proposals have emerged during the efforts of the
MPI forum toward the MPI-3 standard.§ However, these proposals are still in their infancy, and it is
expected that several years will pass before they are blessed by the forum in a future revision and
become generally deployed and available.

The current MPI-3 standard leaves open an optional behavior regarding failures to qual-
ify as a ‘high-quality implementation’. According to this specification, when using the
MPI_ERRORS_RETURN error handler, the MPI library should return control to the user when
it detects a failure. In this paper, we propose the idea of Checkpoint-on-Failure (CoF) as a min-
imal impact feature to enable MPI libraries to support forward recovery strategies. Despite the
default undefined state of MPI that does not permit continued communication in case of a fail-
ure, we demonstrate that an implementation that enables CoF is simple and yet effectively supports
ABFT recovery strategies that completely avoid costly periodic checkpointing. The CoF protocol
undergoes checkpoint after a failure has struck, thereby creating an optimal number of checkpoints
(exactly one per actual failure). The MPI application is then restarted in order to restore a fresh,
functional MPI library. The dataset is reloaded from checkpoints where possible; otherwise, it is
restored through a scalable, application-specific forward-recovery protection scheme.

This paper is an extended version of the previous work published in [5]. It completes the analysis
by considering the broader case of general applications where only part of the computations are han-
dled by MPI routines. In Section 5, we explain how such applications, for which periodic checkpoint
restart is generally not practical, can still efficiently integrate the subset of their MPI operations with
the CoF approach. Additionally, this type of deployment also eliminates the checkpoint overhead:
the non-MPI part of the application can remain dormant during the redeployment of MPI so that the
dataset remains resident in memory without paying the cost of checkpoint Input/Output (I/O). We
then evaluate this application scheme with an additional experiment.

The paper is organized as follows: the next section presents typical fault-tolerant approaches and
related works to discuss their requirements and limitations. Then in Section 3, we present the CoF
approach and the minimal support required from the MPI implementation. Section 4 presents a prac-
tical use case: the ABFT QR algorithm and how it has been modified to fit the proposed paradigm.
Section 5 introduces a technique for the integration of CoF-enabled operations in broader applica-
tions, and Section 6 presents an experimental evaluation of the implementation, followed by our
conclusions.

2. BACKGROUND AND RELATED WORK

Message passing is the dominant form of communication used in parallel applications, and the MPI
standard specification, with its widely available implementations, forms the backbone of the HPC

§http://meetings.mpi-forum.org/mpi3.0_ft.php
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software infrastructure. In this context, the primary form of fault tolerance today is rollback recov-
ery with periodical checkpoints to disk. Although this method is effective in allowing applications
to recover from failures using a previously saved state, it causes serious scalability concerns [6].
Moreover, periodic checkpointing requires precise heuristics for fault frequency to minimize the
number of superfluous, expensive, protective actions [7–11]. In contrast, the work presented here
focuses on enabling forward recovery. Checkpoint actions are taken only after a failure is detected;
hence, the checkpoint interval is optimal by definition, as there will be one checkpoint interval per
effective fault.

Forward recovery leverages algorithms’ properties to complete operations despite failures. In
naturally fault-tolerant applications, the algorithm can compute the solution while totally ignor-
ing the contributions of failed processes. In ABFT applications, a recovery phase is necessary,
but failure-damaged data can be reconstructed only by applying mathematical operations on the
remaining dataset [12]. A recoverable dataset is usually created by initially computing redundant
data, dispatched so as to avoid unrecoverable loss of information from failures. At each itera-
tion, the algorithm applies the necessary mathematical transformations to update the redundant
data (at the expense of more communication and computation). Despite great scalability and low
overhead [3,13], the adoption of such algorithms has been hindered by the requirement that the sup-
port environment must continue to consistently deliver communications, even after being crippled
by failures.

The current MPI Standard (MPI-3.0, [4]) does not provide significant help to deal with the
required type of behavior. Section 2.8 states in the first paragraph: ‘MPI does not provide mecha-
nisms for dealing with failures in the communication system. [. . . ] Whenever possible, such failures
will be reflected as errors in the relevant communication call. Similarly, MPI itself provides no
mechanisms for handling processor failures.’ Failures, be they due to a broken link or a dead pro-
cess, are considered resource errors. Later, in the same section: ‘This document does not specify
the state of a computation after an erroneous MPI call has occurred. The desired behavior is that
a relevant error code be returned, and the effect of the error be localized to the greatest possible
extent.’ So for the current standard, process or communication failures are to be handled as errors,
and the behavior of the MPI application after an error has been returned is left unspecified by the
standard. However, the standard does not prevent implementations from going beyond its require-
ments and on the contrary, encourages high-quality implementations to return errors once a failure
is detected. Unfortunately, most of the implementations of the MPI Standard have taken the path of
considering process failures as unrecoverable errors, and the processes of the application are most
often killed by the runtime system when a failure hits any of them, leaving no opportunity for the
user to mitigate the impact of failures.

In the past, some efforts have been undertaken to enable ABFT support in MPI. Fault-tolerant MPI
(FT-MPI) [14] was an MPI-1 implementation that proposed changes to the MPI semantics to enable
repairing communicators, thus re-enabling communications for applications damaged by failures.
This approach has proven successful and applications have been implemented using FT-MPI. How-
ever, these modifications were not adopted by the MPI standardization body, and the resulting lack
of portability undermined user adoption for this fault tolerant solution.

During the process that recently resulted in the MPI-3 Standard, a specific working group
was assembled to investigate the issues of Fault Tolerance support in MPI. Some of the early
results are outlined in the following publication [15]. Late in the process, promising results had
been demonstrated toward effective support of process failures and continued MPI operations
with acceptable overhead [16]. However, these propositions were in too early a state to meet
the calendar requirements of MPI-3, and their adoption (and according availability in production
systems) is, at best, postponed to the restart of the MPI Forum toward the next version of the
MPI standard.

In [17], the authors discuss alternative or slightly modified interpretations of the MPI Standard
that enable some forms of fault tolerance. One core idea is that process failures happening in another
MPI world, connected only through an intercommunicator, should not prevent the continuation of
normal operations. The complexity of this approach, for both the implementation and users, has
prevented these ideas from having a practical impact.
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In the CoF approach, the only requirement from the MPI implementation is that it does not
forcibly kill the living processes without returning control. No strong support from the MPI stack
is required, in particular, the state of the library is left undefined, and further communication is
impossible without a restart. This simplicity has enabled us to actually implement our proposition
and then experimentally support and evaluate a real ABFT application. Similarly, little effort would
be required to extend MPICH-2 to support CoF (see Section 7 of the MPICH Readme¶).

3. ENABLING ALGORITHM-BASED FAULT TOLERANCE IN MPI

3.1. The Checkpoint-on-Failure protocol

In this paper, we advocate that an extremely efficient form of fault tolerance can be implemented,
strictly based on the MPI Standard, for applications capable of taking advantage of forward recov-
ery. ABFT methods are a family of forward recovery algorithms, capable of restoring missing data
from redundant information located on other processes. In the remainder of this text, we will con-
sider the case of ABFT without loss of generality: any other forward recovery technique could be
substituted. Forward recovery requires that communication between processes can resume, and we
acknowledge that in light of the current standard, requiring the MPI implementation to maintain ser-
vice after failures is too demanding. However, a high-quality MPI library should at least allow the
application to regain control following a process failure. We note that this control gives the appli-
cation the opportunity to save its state and exit gracefully, rather than the usual behavior of being
aborted by the MPI implementation.

Based on these observations, we propose a new approach for supporting application-based for-
ward recovery, called CoF. Algorithm 1 presents the steps involved in the CoF method. In the
associated explanatory figure, horizontal lines represent the execution of processes in two successive
MPI applications. When a failure eliminates a process, other processes are notified and regain con-
trol from ongoing MPI calls (1). Surviving processes assume the MPI library is dysfunctional and
do not call further MPI operations (in particular, they do not yet undergo ABFT recovery). Instead,
they checkpoint their current state independently and abort (2, 3). When all processes exited, the job
is usually terminated, but the user (or a managing script, batch scheduler, runtime support system,
etc.) can launch a new MPI application (4), which reloads the dataset from the checkpoint (5). In
the new application, the MPI library is functional and communications possible; the ABFT recovery
procedure is called to restore the data of the process(es) that could not be restarted from checkpoint
(6). When the global state has been repaired by the ABFT procedure, the application is ready to
resume normal execution.

Compared with periodic checkpointing, in CoF, a process pays the cost of creating a checkpoint
only when a failure or multiple simultaneous failures have happened, hence an optimal number of
checkpoints during the run (and no checkpoint overhead on failure-free executions). Moreover, in
periodic checkpointing, a process is protected only when its checkpoint is stored on safe, remote

¶http://www.mpich.org/documentation/guides/files/mpich2-1.5-README.txt
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storage, whereas in CoF, local checkpoints are sufficient: the forward recovery algorithm recon-
structs datasets of processes that cannot restart from checkpoint. Of course, CoF also exhibits the
same overhead as the recovery technique employed by the application. In an ABFT approach, the
application might need to do extra computation, even in the absence of failures, to maintain inter-
nal redundancy (whose degree varies with the maximum number of simultaneous failures) used to
recover data damaged by failures. However, ABFT techniques often demonstrate excellent scala-
bility; for example, the overhead on failure-free execution of the ABFT QR operation (used as an
example in Section 4) is inversely proportional to the number of processes [13].

3.2. MPI requirements for Checkpoint-on-Failure

Returning control over failures. In most MPI implementations, MPI_ERRORS_ABORT is the
default (and often, only functional) error handler. However, the MPI Standard also defines the
MPI_ERRORS_RETURN handler. To support CoF, the MPI library should never deadlock because
of failures but invoke the error handler at least on processes doing direct communications with the
failed process and returns control to the application.

Preparing for checkpoint. If the MPI implementation intends to support a system-based checkpoint
module (such as MTCP [18]), before invoking the error handler, the MPI library must dispose of its
internal state so that it is not restored by the checkpoint library upon restart. This cleanup consists
in releasing all acquired resources and freeing internal buffers and structures, which is safe as the
MPI library is not supposed to be functional anymore. If the MPI implementation intends to support
only user-directed checkpoint, this effort can be spared.

Termination After Checkpoint. A process that detects a failure ceases to use MPI. It only
checkpoints on some storage and exits without calling MPI_Finalize. Exiting without calling
MPI_Finalize is an error from the MPI perspective; hence, the failure cascades following the com-
munication pattern of the application, and MPI eventually returns with a failure notification on
every process, which triggers their own checkpoint procedure and termination. Only processes that
do not communicate may reach MPI_Finalize without detecting a failure, adding a barrier before
MPI_Finalize will result in the expected error in that case.

3.3. Open MPI implementation

Open MPI is an MPI 2.2 implementation architected such that it contains two main levels, the run-
time (ORTE) and the MPI library (OMPI). As with most MPI library implementations, the default
behavior of Open MPI is to abort after a process failure. This policy was implemented in the run-
time system, preventing any kind of decision from the MPI layer or the user level. The major change
requested by the CoF protocol was to make the runtime system resilient and leave the decision in
case of failure to the MPI library policy and ultimately to the user application.

Failure resilient runtime. For full support of the CoF protocol, it is sufficient for the runtime to delay
the cleanup of the failed MPI application until it terminates itself. However, a persistent runtime
that remains available for spawning replacement MPI processes confers a number of advantages
compared with this simple design. Indeed, it eliminates the downtime resulting from the complete
redeployment of the parallel job infrastructure and the supplementary wait-time from losing the
batch scheduler reservation. In addition, it can serve as a local storage for checkpoints.

The ORTE runtime layer depends on an out-of-band communication mechanism (OOB); there-
fore, node failures not only impact the MPI communications but also disrupt the OOB overlay
routing topology. Fortunately, restoring TCP-based OOB communications is easier than it is to
repair MPI. The default routing policy in the Open MPI runtime has been amended to allow for self-
healing behaviors. The OOB overlay topology now automatically routes around failed processes.
In some routing topologies, such as a star, this is a trivial operation and only requires excluding
the failed process from the routing tables. For more elaborate topologies, such as a binomial tree,
the healing operation involves computing the closest neighbors in the direction of the failed process
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and reconnecting the topology through them. The repaired topology is not rebalanced, resulting in
degraded performance but complete functionality after failures. Although in-flight messages that
were currently ‘hopping’ through the failed processes are lost, newer in-flight messages are safely
routed on the repaired topology. Thanks to self-healing topologies, the runtime remains responsive
and can continue to support the replacement MPI application.

Failure notification. Although not strictly necessary to support CoF, rapid dissemination of failure
notifications has a significant influence on the delay before the recovery can start. The runtime has
therefore been augmented with a failure detection and dissemination service. To track the status of
the failures, an incarnation number has been included in the process names. Following a failure,
the name of the failed process (including the incarnation number) is broadcasted over the OOB
topology. By including this incarnation number, we can identify transient process failures, prevent
duplicate detections, and track message status. ORTE processes monitor the health of their neigh-
bors in the OOB routing topology. Detection of other processes rely on a failure resilient broadcast
that overlays on the OOB topology. This broadcast algorithm has a low probability of creating a
bipartition of the routing topology, hence ensuring a high accuracy of the failure detector. We will
show in the experiments that the underlying OOB routing algorithm has a significant influence on
the propagation time. Finally, on each node, the ORTE runtime layer forwards failure notifications
to the MPI layer, which has been modified to invoke the appropriate MPI error handler.

4. EXAMPLE: THE QR FACTORIZATION

In this section, we propose to illustrate the applicability of CoF by considering a representative
routine of a widely used class of algorithms: dense linear factorizations. The QR factorization is
a cornerstone building block in many applications, including solving Ax D b when matrices are
ill-conditioned, computing eigenvalues, least square problems, or solving sparse systems through
the iterative generalized minimal residual method. For an M � N matrix A, the QR factorization
produces Q and R, such that ADQR and Q is an M �M orthogonal matrix and R is an M �N
upper triangular matrix. The most commonly used implementation of the QR algorithm on a dis-
tributed memory machine comes from the ScaLAPACK linear algebra library [19], based on the
block QR algorithm. It uses a 2D block-cyclic distribution for load balance and is rich in level 3
BLAS operations, thereby achieving high performance.

4.1. ABFT QR factorization

In the context of FT-MPI, the ScaLAPACK QR algorithm has been rendered fault tolerant through
an ABFT method in previous work [13]. This ABFT algorithm protects both the left (Q) and right
(R) factors from fail-stop failures at any time during the execution. At the time of failure, every
surviving process is notified by FT-MPI. FT-MPI then spawns a replacement process that takes the
same grid coordinates in the P � Q block-cyclic distribution. Missing checksums are recovered
from duplicates, a reduction collective communication recovers missing data blocks in the right
factor from checksums. The left factor is protected by the Q-parallel panel checksum, it is either
directly recovered from checksum or by recomputing the panels in the current Q-wide section (see
[13]). Although this algorithm is fault tolerant, it requires continued service from the MPI library
after failures, which is a stringent requirement that can be waived with CoF.

4.2. Checkpoint-on-Failure QR

Checkpoint Procedure. In our current implementation of CoF, system-level checkpointing is not
supported and would result in restoring the state of the broken MPI library upon restart. Instead, the
application provides a custom MPI error handler, which invokes an algorithm-specific checkpoint
procedure to dump the matrices and the value of important loop indices into a file.

State Restoration. In the theoretical version of the ABFT algorithm, regardless of when the fail-
ure is detected, the current iteration is completed before entering the recovery procedure, so that
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all updates are applied to the checksums. In the case of the CoF protocol, failures interrupt the
algorithm immediately, the current iteration cannot be completed because of lack of communica-
tion capabilities. A ScaLAPACK program has a deep call stack, layering functions from multiple
software packages, such as PBLAS, BLACS, LAPACK, and BLAS. Because failure notification
happens only in MPI, lower level, local procedures (BLAS and LAPACK) are never interrupted.
However, PBLAS operations may be incomplete, and therefore checksums only partially updated.

To resolve this issue, the call stack must be restored on every process. The current indices in
the loop nest of the QR algorithm, down to the PBLAS level, are adjunct to the checkpoint. When
restarted from a checkpoint, a process undergoes a ‘dry run’ phase that mimics the already com-
pleted loop nests without actually applying modifications to or exchanging data. When the same
loop indices as before the failure are reached, the matrix content is loaded from the checkpoint;
the state is then identical to that immediately preceding the failure. The regular ABFT recovery
procedure can then be applied: the current iteration of the factorization is completed to update all
checksums, and the dataset is finally rebuilt using the ABFT reduction.

5. APPLICATION OF THE COF PROTOCOL WITHOUT CHECKPOINTS

The CoF protocol circumvents one of the major limitations of current MPI implementations: the
lack of confidence that the MPI library is capable of successfully completing communications once
a failure happened. As illustrated earlier, forward recovery strategies are capable of taking advan-
tage of this technique and provide efficient fault tolerance support that does not require periodic
checkpointing. However, when a failure strike, the CoF protocol still incurs checkpoint I/O over-
head. In this section, we explain how the CoF protocol can be efficiently integrated with already
resilient, non-MPI applications to completely eliminate all checkpointing activity. We will illustrate
the approach with a fault-tolerant database management system, SciDB.

Fault-tolerant database management exposes a set of requirements that is best addressed today
using replication and transactional operations. SciDB [20] combines database operations and many
scientific-specific operations (including linear algebra routines) to create a highly expressive request
query language suitable for scientists to solve their data analysis problems. The SciDB system is
not implemented on top of MPI, mainly because of the lack of fault tolerance capabilities from
the MPI Standard. It makes use, however, of the MPI-based distributed linear algebra operations
in ScaLAPACK to provide, among other things, various factorization routines. Because most MPI
implementations are not usable after a process failure, and high availability is a necessity in database
management systems, the SciDB implementation cannot integrate the MPI library in its main
process. As a result, the linear algebra operations are called from separate processes: a query coordi-
nator orders the distributed database managers to locate the data on which the factorization operation
must be applied and to expose this data in the expected ScaLAPACK layout using one shared mem-
ory segment per node; it then launches a ScaLAPACK/MPI application that attaches to this memory
segment and applies the operation on it. If a failure hits a node, the MPI application aborts, and the
mpirun child process reports the error to the data query coordinator. The original data is recovered
from the database management system (using database-specific fault-tolerant techniques), and the
linear algebra operation is relaunched from scratch on the original data.

This approach can be improved using the CoF protocol and an ABFT implementation of the
factorization operation. The idea is depicted in Figure 1. SciDB and ScaLAPACK are coupled in
a similar way; however, the DB managers compute the initial checksum of the original data and
expose both the data and checksum to the ABFT-ScaLAPACK process. The ABFT operation is
applied, and if no failure happens, the result of the factorization is accessible in the shared mem-
ory segments (the checksum data can then be discarded by the DB managers). If a failure occurs,
the MPI process updates the shared memory segments with the meta information of the checkpoint
(values of the loop counters, etc.); the content of the shared memory segments is analog to the
checkpoints performed in the normal CoF protocol. Then the MPI processes quit, and the mpirun
child process reports the error to the database coordinator. Instead of fixing the data issue at the DB
level, the coordinator immediately relaunches a new ABFT-ScaLAPACK operation on the same set
of nodes plus a spare node with an empty shared memory segment, the ABFT algorithm recovers
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Figure 1. SciDB/CoF ABFT ScaLAPACK Integration.

the data, and the original operation resumes. Upon successful completion, the mpirun child process
reports to the database coordinator that the result is in the shared memory segments.

This approach is advantageous compared with both the original design and the checkpoint-based
CoF approach. Instead of restarting from scratch after each failure, the factorization incurs only the
small recovery overhead of ABFT, ensuring a faster time-to-solution for the linear algebra oper-
ation. In exchange, a small overhead for creating and maintaining the checksum data during the
operation is imposed on the failure-free case. Second, this approach removes the cost of writing
the checkpoint to a file: the shared memory segment that survives the exit of the MPI processes
where the node was not subject to a failure and the checksum information maintained by the ABFT
algorithm are sufficient to recover the missing data. The segment of memory on which the operation
is computed is made remanent, creating the bulk of the checkpoint data and reducing to an insignif-
icant value the cost of checkpointing when a failure occurs. This will be demonstrated later in the
experimental section.

6. PERFORMANCE DISCUSSION

In this section, we use our Open MPI and ABFT QR implementations to evaluate the performance
of the CoF protocol. We use two test platforms. The first machine, ‘Dancer’, is a 16-node cluster.
All nodes are equipped with two 2.27 GHz quad-core Intel E5520 CPUs with a 20 GB/s Infiniband
interconnect. Solid-state drive (SSD) disks are used as the checkpoint storage media. The second
system is the ‘Kraken’ supercomputer. Kraken is a Cray XT5 machine with 9408 compute nodes.
Each node has two Istanbul 2.6 GHz six-core AMD Opteron processors, 16 GB of memory, and
is connected to other nodes through the SeaStar2+ interconnect. The scalable cluster file system
‘Lustre’ is used to store checkpoints.

6.1. MPI library overhead

One of the concerns when evaluating the performance of fault tolerance techniques is the amount
of overhead introduced by the fault tolerance management additions. Our implementation of fault
detection and notification is mostly implemented in the non-critical ORTE runtime. Typical HPC
systems feature a separated service network (usually Ethernet-based) and a performance intercon-
nect, hence health monitoring traffic, which happens on the OOB service network, is physically
separated from the MPI communications, leaving no opportunity for network jitter. Changes to MPI
functions are minimal: the same condition that used to trigger unconditional abort has been repur-
posed to trigger error handlers. As expected, no impact on MPI bandwidth or latency was measured.
The memory usage of the MPI library is slightly increased, as the incarnation number doubles the
size of process names; however, this is negligible in typical deployments.
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Figure 2. Failure detection time, sorted by process rank, depending on the OOB overlay network used for
failure propagation.

6.2. Failure detection

According to the requirement specified in Section 3.2, only in-band failure detection is required
to enable CoF. Processes detecting a failure checkpoint then exit, cascading the failure to pro-
cesses communicating with them. However, no recovery action (in particular checkpointing) can
take place before a failure has been notified. Thanks to asynchronous failure propagation in the run-
time, responsiveness can be greatly improved with a high probability for the next MPI call to detect
the failures, regardless of communication pattern or checkpoint duration.

We designed a microbenchmark to measure failure detection time as experienced by MPI pro-
cesses. The benchmark code synchronizes with an MPI_BARRIER, stores the reference date, injects
a failure at a specific rank, and enters a ring algorithm until the MPI error handler stores the detec-
tion date. The OOB routing topology used by the ORTE runtime introduces a non-uniform distance
to the failed process; hence, failure detection time experienced by a process may vary depending
on both the used OOB overlay topology and the position of the failed process in the topology.
Figure 2(a) and 2(b) present the case of the linear and binomial OOB topologies, respectively. The
curves ‘Low, Middle, and High’ present the behavior for failures happening at different positions in
the OOB topology. On the horizontal axis is the rank of the detecting process, and on the vertical
axis is the detection time it experienced. The experiment uses 16 nodes, with one process per node,
MPI over Infiniband, OOB over Ethernet, an average of 20 runs, and the MPI barrier latency is four
orders of magnitude lower than measured values.

In the linear topology (Figure 2(a)), every runtime process is connected to the mpirun process. For
a higher rank, failure detection time increases linearly because it is notified by the mpirun process
only after the notification has been sent to all lower ranks. This issue is bound to increase with scale.
The binomial tree topology (Figure 2(b)) exhibits a similar best failure detection time. However, this
more scalable topology has a low output degree and eliminates most contentions on outgoing mes-
sages, resulting in a more stable, lower average detection time, regardless of the failure position.
Overall, failure detection time is on the order of milliseconds, a much smaller figure than typical
checkpoint time.

6.3. Checkpoint-on-Failure QR performance

Supercomputer performance. Figure 3 presents the performance on the Kraken supercomputer. The
process grid is 24 � 24, and the block size is 100. ABFT-QR (no failure) presents the performance
of the CoF QR implementation in a fault-free execution; it is noteworthy, that when there are no
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Figure 3. ABFT QR and one CoF recovery on Kraken (Lustre).

failures, the performance is exactly identical to the performance of the unmodified ABFT-QR imple-
mentation. The ABFT-QR (with CoF recovery, latter called CoF-QR for brevity) curves present the
performance when a failure is injected after the first step of the PDLARFB kernel. The performance
of the non-fault tolerant ScaLAPACK QR is also presented for reference.

Without failures, the performance overhead compared with the regular ScaLAPACK is caused
by the extra computation to maintain the checksums inherent to the ABFT algorithm [13]; this
extra computation is unchanged when applying the CoF method to the ABFT-QR. Only on runs
where failures occur does the CoF protocol undergoes the supplementary overhead of storing and
reloading checkpoints. However, the performance of CoF-QR remains very close to the no-failure
case. For instance, at matrix size N D 100, 000, CoF-QR still achieves 2.86 Tflop/s after recov-
ering from a failure, which is 90% of the performance of the non-fault tolerant ScaLAPACK
QR. This demonstrates that the CoF protocol enables efficient and practical recovery schemes
on supercomputers.

Impact of local checkpoint storage. Figure 4(a) presents the performance of the CoF-QR implemen-
tation on the Dancer cluster with an 8�16 process grid. Although a smaller test platform, the Dancer
cluster features local storage on nodes and a variety of performance analysis tools unavailable on
Kraken. As expected (see [13]), the ABFT method has a higher relative cost on this smaller machine
(with a smaller number of processors and a smaller problem size, the cost in supplementary oper-
ations to update checksums is relatively larger). Compared with the Kraken platform, the relative

0

100

200

300

400

500

600

700

800

10k 20k 30k 40k 50k

P
er

fo
rm

an
ce

 (
G

fl
o

p
s/

s)

Matrix Size (N)

ScaLAPACK QR
ABFT-QR (w/o failure)

ABFT-QR (w/1 CoF recovery)

(a) Performance

0

1

2

3

4

5

6

7

20k 25k 30k 35k 40k 45k 50k

A
p

p
lic

at
io

n
 T

im
e 

S
h

ar
e 

(%
)

Matrix Size (N)

Load Checkpoint
Dump Checkpoint

ABFT Recovery

(b) Time breakdown of one CoF recovery

Figure 4. ABFT QR and one CoF recovery on Dancer (local SSD).
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Figure 5. ABFT QR and one recovery on Kraken: comparing CoF and SM-CoF overheads.

cost of CoF failure recovery is smaller on Dancer. The CoF protocol incurs disk accesses to store
and load checkpoints when a failure hits; hence, the recovery overhead depends on I/O performance.
By breaking down the relative cost of each recovery step in CoF, Figure 4(b) shows that checkpoint
saving and loading only takes a small percentage of the total runtime, thanks to the availability of
solid state disks on every node. Because checkpoint reloading immediately follows checkpointing,
the OS cache satisfies most disk accesses, resulting in high I/O performance. For matrices larger
than N D 44, 000, the memory usage on each node is high and decrease the available space for disk
cache, explaining the decline in I/O performance and the higher cost of checkpoint management.
Overall, the presence of fast local storage can be leveraged by the CoF protocol to speedup recovery
(unlike periodic checkpointing, which depends on remote storage by construction). Nonetheless,
as demonstrated by the efficiency on Kraken, although this is a valuable optimization, it is not a
mandatory requirement for satisfactory performance.

Checkpoint-on-Failure, without the checkpoints. An interesting optimization to CoF is to avoid the
checkpointing cost by using the SM-CoF approach described in Section 5. In this paragraph, we
present the performance of the QR factorization when applied by a fragile helper MPI application
onto a dataset exported through a shared memory segment from a resilient, non-MPI application.
Figure 5 compares the overhead incurred by introducing a failure with checkpoint-based CoF recov-
ery versus a shared-memory-CoF recovery where a master application maintains the dataset resident
in memory.

The cost of the ABFT recovery is unchanged by the use of SM-CoF; the obvious consequence is
that for very small matrix sizes, when the relative cost of ABFT checksum inversion represents a
large portion of the overall compute time, the difference between the shared-memory optimization
and the checkpoint based CoF is small. A similar result is observed for very large matrices: for a
matrix of size N , checkpointing time is O.N 2/, whereas compute time is O.N 3/; thus, the cost
of storing and reloading checkpoints is dwarfed by the total execution time of the application and
achieve similar asymptotic performance. For intermediate matrix sizes, however, the cost of check-
pointing represents a significant share of the overhead experienced by the application during the
recovery procedure. In that case, which is the most relevant in production deployments, the SM-CoF
optimization successfully suppresses the checkpoint overhead and performs similarly to ABFT-QR
on a fully fault-tolerant MPI implementation, although at the expense of more complexity in the
application code.

7. CONCLUDING REMARKS

In this paper, we presented an original scheme to enable forward recovery using only features of
the current MPI Standard. Rollback recovery, which relies on periodic checkpointing, has a variety
of issues. The ideal period between checkpoints, a critical parameter, is particularly hard to assess.
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Too short a period wastes time and resources on unnecessary I/O. Overestimating the period results
in dramatically increasing the lost computation when returning to the distant last successful check-
point. Although CoF involves checkpointing, it takes checkpoint images at optimal times by design,
only after a failure has been detected. This small modification enables the deployment of ABFT
techniques, without requiring a complex, unlikely to be available MPI implementation that itself
survives failures. The MPI library needs only to provide the feature set of a high-quality implemen-
tation of the MPI Standard: the MPI communications may be dysfunctional after a failure, but the
library must return control to the application instead of aborting brutally.

We demonstrated, by providing such an implementation in Open MPI, that this feature set can be
easily integrated without noticeable impact on communication performance. We then converted an
existing ABFT QR algorithm to the CoF protocol. Beyond this example, the CoF protocol is appli-
cable on a large range of applications that already feature an ABFT version, for example, the dense
direct solvers Cholesky, LU [21] and the dense iterative solver CG [22]. Similarly, ABFT algorithms
exist for sparse computation [23]. Beside ABFT, many master–slave and iterative methods enjoy an
extremely inexpensive forward recovery strategy where the damaged domains are simply discarded
and therefore can also benefit from the CoF protocol.

The performance on the Kraken supercomputer reaches 90% of the non-fault-tolerant algorithm,
even when including the cost of recovering from a failure (a figure similar to regular, non-compliant
MPI ABFT). In addition, on a platform featuring node local storage, the CoF protocol can leverage
low overhead checkpoints (unlike rollback recovery that requires remote storage). To the extreme,
the cost of checkpointing can be completely avoided when the application uses a master process to
actively retain the dataset in memory during the MPI restart.

The MPI standardization body, the MPI Forum, is currently considering the addition of new MPI
constructs, functions, and semantics to support fault-tolerant applications.|| Although these additions
may decrease the cost of recovery, they are likely to increase the failure-free overhead on fault toler-
ant application performance. It is therefore paramount to compare the cost of the CoF protocol with
prospective candidates to standardization on a wide, realistic range of applications, especially those
that feature a low computational intensity.
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